79 research outputs found

    Specification and Verification of Distributed Embedded Systems: A Traffic Intersection Product Family

    Full text link
    Distributed embedded systems (DESs) are no longer the exception; they are the rule in many application areas such as avionics, the automotive industry, traffic systems, sensor networks, and medical devices. Formal DES specification and verification is challenging due to state space explosion and the need to support real-time features. This paper reports on an extensive industry-based case study involving a DES product family for a pedestrian and car 4-way traffic intersection in which autonomous devices communicate by asynchronous message passing without a centralized controller. All the safety requirements and a liveness requirement informally specified in the requirements document have been formally verified using Real-Time Maude and its model checking features.Comment: In Proceedings RTRTS 2010, arXiv:1009.398

    Distributed Real-Time Emulation of Formally-Defined Patterns for Safe Medical Device Control

    Full text link
    Safety of medical devices and of their interoperation is an unresolved issue causing severe and sometimes deadly accidents for patients with shocking frequency. Formal methods, particularly in support of highly reusable and provably safe patterns which can be instantiated to many device instances can help in this regard. However, this still leaves open the issue of how to pass from their formal specifications in logical time to executable emulations that can interoperate in physical time with other devices and with simulations of patient and/or doctor behaviors. This work presents a specification-based methodology in which virtual emulation environments can be easily developed from formal specifications in Real-Time Maude, and can support interactions with other real devices and with simulation models. This general methodology is explained in detail and is illustrated with two concrete scenarios which are both instances of a common safe formal pattern: one scenario involves the interaction of a provably safe pacemaker with a simulated heart; the other involves the interaction of a safe controller for patient-induced analgesia with a real syringe pump.Comment: In Proceedings RTRTS 2010, arXiv:1009.398

    PALS-Based Analysis of an Airplane Multirate Control System in Real-Time Maude

    Full text link
    Distributed cyber-physical systems (DCPS) are pervasive in areas such as aeronautics and ground transportation systems, including the case of distributed hybrid systems. DCPS design and verification is quite challenging because of asynchronous communication, network delays, and clock skews. Furthermore, their model checking verification typically becomes unfeasible due to the huge state space explosion caused by the system's concurrency. The PALS ("physically asynchronous, logically synchronous") methodology has been proposed to reduce the design and verification of a DCPS to the much simpler task of designing and verifying its underlying synchronous version. The original PALS methodology assumes a single logical period, but Multirate PALS extends it to deal with multirate DCPS in which components may operate with different logical periods. This paper shows how Multirate PALS can be applied to formally verify a nontrivial multirate DCPS. We use Real-Time Maude to formally specify a multirate distributed hybrid system consisting of an airplane maneuvered by a pilot who turns the airplane according to a specified angle through a distributed control system. Our formal analysis revealed that the original design was ineffective in achieving a smooth turning maneuver, and led to a redesign of the system that satisfies the desired correctness properties. This shows that the Multirate PALS methodology is not only effective for formal DCPS verification, but can also be used effectively in the DCPS design process, even before properties are verified.Comment: In Proceedings FTSCS 2012, arXiv:1212.657

    A Rewriting-Logic-Based Technique for Modeling Thermal Systems

    Full text link
    This paper presents a rewriting-logic-based modeling and analysis technique for physical systems, with focus on thermal systems. The contributions of this paper can be summarized as follows: (i) providing a framework for modeling and executing physical systems, where both the physical components and their physical interactions are treated as first-class citizens; (ii) showing how heat transfer problems in thermal systems can be modeled in Real-Time Maude; (iii) giving the implementation in Real-Time Maude of a basic numerical technique for executing continuous behaviors in object-oriented hybrid systems; and (iv) illustrating these techniques with a set of incremental case studies using realistic physical parameters, with examples of simulation and model checking analyses.Comment: In Proceedings RTRTS 2010, arXiv:1009.398

    Model Checking Classes of Metric LTL Properties of Object-Oriented Real-Time Maude Specifications

    Full text link
    This paper presents a transformational approach for model checking two important classes of metric temporal logic (MTL) properties, namely, bounded response and minimum separation, for nonhierarchical object-oriented Real-Time Maude specifications. We prove the correctness of our model checking algorithms, which terminate under reasonable non-Zeno-ness assumptions when the reachable state space is finite. These new model checking features have been integrated into Real-Time Maude, and are used to analyze a network of medical devices and a 4-way traffic intersection system.Comment: In Proceedings RTRTS 2010, arXiv:1009.398

    Extending the Real-Time Maude Semantics of Ptolemy to Hierarchical DE Models

    Full text link
    This paper extends our Real-Time Maude formalization of the semantics of flat Ptolemy II discrete-event (DE) models to hierarchical models, including modal models. This is a challenging task that requires combining synchronous fixed-point computations with hierarchical structure. The synthesis of a Real-Time Maude verification model from a Ptolemy II DE model, and the formal verification of the synthesized model in Real-Time Maude, have been integrated into Ptolemy II, enabling a model-engineering process that combines the convenience of Ptolemy II DE modeling and simulation with formal verification in Real-Time Maude.Comment: In Proceedings RTRTS 2010, arXiv:1009.398

    Formal Model Engineering for Embedded Systems Using Real-Time Maude

    Full text link
    This paper motivates why Real-Time Maude should be well suited to provide a formal semantics and formal analysis capabilities to modeling languages for embedded systems. One can then use the code generation facilities of the tools for the modeling languages to automatically synthesize Real-Time Maude verification models from design models, enabling a formal model engineering process that combines the convenience of modeling using an informal but intuitive modeling language with formal verification. We give a brief overview six fairly different modeling formalisms for which Real-Time Maude has provided the formal semantics and (possibly) formal analysis. These models include behavioral subsets of the avionics modeling standard AADL, Ptolemy II discrete-event models, two EMF-based timed model transformation systems, and a modeling language for handset software.Comment: In Proceedings AMMSE 2011, arXiv:1106.596

    Using the PALS Architecture to Verify a Distributed Topology Control Protocol for Wireless Multi-Hop Networks in the Presence of Node Failures

    Full text link
    The PALS architecture reduces distributed, real-time asynchronous system design to the design of a synchronous system under reasonable requirements. Assuming logical synchrony leads to fewer system behaviors and provides a conceptually simpler paradigm for engineering purposes. One of the current limitations of the framework is that from a set of independent "synchronous machines", one must compose the entire synchronous system by hand, which is tedious and error-prone. We use Maude's meta-level to automatically generate a synchronous composition from user-provided component machines and a description of how the machines communicate with each other. We then use the new capabilities to verify the correctness of a distributed topology control protocol for wireless networks in the presence of nodes that may fail.Comment: In Proceedings RTRTS 2010, arXiv:1009.398

    Compositional Analysis of Protocol Equivalence in the Applied pi-Calculus Using Quasi-open Bisimilarity

    Get PDF
    This paper shows that quasi-open bisimilarity is the coarsest bisimilarity congruence for the applied pi-calculus. Furthermore, we show that this equivalence is suited to security and privacy problems expressed as an equivalence problem in the following senses: (1) being a bisimilarity is a safe choice since it does not miss attacks based on rich strategies; (2) being a congruence it enables a compositional approach to proving certain equivalence problems such as unlinkability; and (3) being the coarsest such bisimilarity congruence it can establish proofs of some privacy properties where finer equivalences fail to do so
    corecore